The integration of dilute acid hydrolysis of xylan and fast pyrolysis of glucan to obtain fermentable sugars
نویسندگان
چکیده
BACKGROUND Fermentable sugars are important intermediates in the biological conversion of biomass. Hemicellulose and amorphous cellulose are easily hydrolyzed to fermentable sugars in dilute acid, whereas crystalline cellulose is more difficult to be hydrolyzed. Cellulose fast pyrolysis is an alternative method to liberate valuable fermentable sugars from biomass. The amount of levoglucosan generated from lignocellulose by fast pyrolysis is usually lower than the theoretical yield based on the cellulose fraction. Pretreatment is a promising route to improve the yield of levoglucosan from lignocellulose. RESULTS The integration of dilute sulfuric acid hydrolysis and fast pyrolysis to obtain fermentable sugars was evaluated in this study. Dilute sulfuric acid hydrolysis could remove more than 95.1 and 93.4 % of xylan (the main component of hemicellulose) from sugarcane bagasse and corncob with high yield of xylose. On the other hand, dilute sulfuric acid hydrolysis was also an effective pretreatment to enhance levoglucosan yield from lignocellulose. Dilute acid hydrolysis could accumulate glucan (the component of cellulose) and remove most of the alkali and alkaline earth metals which were powerful catalysts during fast pyrolysis. Further increase in dilute acid concentration (from 0 to 2 %) in pretreatment could promote the yield of levoglucosan in fast pyrolysis. The acid pretreated sugarcane bagasse and corncob gave levoglucosan yields of 43.8 and 35.2 % which were obvious higher than those of raw sugarcane bagasse (12.0 %) and corncob (7.0 %). CONCLUSIONS Obtaining fermentable sugars by combination dilute acid hydrolysis of xylan and fast pyrolysis of glucan could make full utilization of biomass, and get fermentable sugars economically from biomass for bio-refinery.
منابع مشابه
Chemical Characterisation and Dilute-acid Hydrolysis of Rice Hulls from an Artisan Mill
The chemical composition of rice hulls produced in an artisan mill and its conversion to fermentable sugars was investigated. The carbohydrate fraction represented 59.2% (w/w) of the dry hulls. Cellulose, with 36.6%, was the main component, followed by xylan with 13.9%. An important contribution of starch (8.7%) was also detected. The content of ash (19.6%) and lignin (15.5%) was comparable wit...
متن کاملEnhancement of total sugar and lignin yields through dissolution of poplar wood by hot water and dilute acid flowthrough pretreatment
BACKGROUND Pretreatment is a vital but expensive step in biomass biofuel production. Overall, most of this past effort has been directed at maximizing sugar yields from hemicellulose and cellulose through trials with different chemicals, operating conditions, and equipment configurations. Flowthrough pretreatment provides a promising platform to dissolution of lignocellulosic biomass to generat...
متن کاملRefining Hemp Hurds into Fermentable Sugars or Ethanol
Steam pretreatment is one of the most efficient pretreatment technologies employed prior to enzymatic hydrolysis of lignocellulosics to obtain high polysaccharide conversion. In this study, steam pretreatment of non-impregnated hemp hurds was investigated at two reactor scales (2 and 10 L) by varying the temperature from 200–230 °C. Glucan recoveries were relatively high (> 82 % of original con...
متن کاملAcid Hydrolysis of Pretreated Palm Oil Lignocellulosic Wastes
Palm oil solid wastes consist of cellulose, hemicellulose and lignin. In this study, a single stage of acid hydrolysis process of palm oil empty fruit bunch (EFB) for production of fermentable sugar was carried out under moderate temperature (45°C) and ambient pressure. The effect of four different process variables such as solid size, HCl concentration, solid percentage and temperature were in...
متن کاملThe roles of xylan and lignin in oxalic acid pretreated corncob during separate enzymatic hydrolysis and ethanol fermentation.
High yields of hemicellulosic and cellulosic sugars are critical in obtaining economical conversion of agricultural residues to ethanol. To optimize pretreatment conditions, we evaluated oxalic acid loading rates, treatment temperatures and times in a 2(3) full factorial design. Response-surface analysis revealed an optimal oxalic acid pretreatment condition to release sugar from the cob of Zea...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره 9 شماره
صفحات -
تاریخ انتشار 2016